Please write the Problem Statement:
Please write the Goal Statement utilizing S.M.A.R.T. objectives (Specific, Measureable, Attainable, Relevant and Time Bound):
What is in Scope? What is out of Scope?
Who are Key Stakeholders?
What are key Milestones?
Describe methods for collecting Voice of the Customer. (SEE APPENDIX A for VOC).
>DM _ oadmap
ix Sigma DMAIC Roadmap
e
s
f your project.
Map
Charter
* Process Map * Translate VOC to ‘s * Early =f(x) Hypothesis * SIPOC Cause & Diagram * FMEA * * Gage R&R Normality Test VA
& 2 Sample t-tests * Moods Median d test
* Multiple Linear Regression and wherever possible.
SOP’s SPC * Refined FMEA
VILLANOVA UNIVERSITY
2
A
I
C
R
Lean
S
Purpo
s
Key
Tool
Key
Outputs
Define
To establish a quantified problem statement, objective and business case that will become the foundation to your Six Sigma project. Conduct stakeholder analysis, select team members and kick
–
of
Primary Metric
Process
Project
Project Plan
* Gather VOC
CTQ
* QFD/HOQ
* COPQ
* Primary & Secondary Metrics
* Establish Project Charter
* Stakeholder Analysis
* Team Selection
* Project PlanMeasure
Refine your understanding of the process. Assess process capability relative to customer specifications. Validate measurement systems. Brainstorm potential x’s.
C&E
SIPOC
FMEA
Cpk
Y
* Detailed Process Map
* Effect
* Cause & Effect Matrix
* Basic Statistics
*
Normality Test
Capability Analysis
Analyze
Conduct data collection and planned studies in order to eliminate non-critical x’s and validate critical x’s. Establish a stronger and quantified Y=f(x) equation.
A
NO
2 Sample t-test
Equal Variances
* Narrowed Y=f(x)
*
1
* 1 & 2 Proportions tests
* Equal variance tests
* Normality tests
* ANOVA
* Mann Whitney
* Paired t-test
* Chi-Square
Improve
Design, test and implement your new process or product under live operating conditions. Pilot solutions if feasible before broadly deploying expensive improvements or products.
Pugh Matrix
Linear
Regression
Binary Logistic Regression
DOE
* Refined Y=f(x)
* Pugh Matrix
* Correlation
*
Simple Linear Regression
* Binary Logistic Regression
* Full Factorial DOE
* Fractional Factorial DOE
Control
Plan, communicate, train and implement your product or process solutions. Ensure control mechanisms are established. Use Poke Yoke, visual controls,
SOP’s
SPC
Control Plan
Communication Plan
* Control Plan
*
Training Plan
* Communication Plan
* Standard Operating Procedures
* Five-S Audit
* Poke Yoke
* Visual Controls
* Statistical Process Control
2
(why is this project important)
2
Statement & Objective 2
(Primary Metric “Y”)
2
2
2
2
2
2
Level Process Map
2
(Potential
‘s)
2
2
2
2
2
2
E
d
2 Primary Metric Updated
2 COPQ Revision
VILLANOVA UNIVERSITY
Calculator
LEAF
Definition
Definition
Definition
card
Instructions
Control Plan
Communication Plan
Training Plan
Calculator
MAP TEMPLATE
HELP for instructions on creating BINS and HISTOGRAMS based on version of EXCEL you are using. SEE SSGB
TEXTBOOK
TEXTBOOK for Instruction
& formula
TEXTBOOK for Instruction
OF CENTRAL TENDENCY
USE EXCEL HELP FOR FORMULA AND INSTRUCTIONS
USE EXCEL
Project Title: | |||||||||||||||||||||||||||||||||||||||||
GO HOME!! | |||||||||||||||||||||||||||||||||||||||||
Black Belt | Project Champion | Executive | Sponsor | M | BB | ||||||||||||||||||||||||||||||||||||
Problem Statement | |||||||||||||||||||||||||||||||||||||||||
Project | Goal | ||||||||||||||||||||||||||||||||||||||||
Milestones | Constraints & Dependencies | Project Risks | Any additional information | ||||||||||||||||||||||||||||||||||||||
Approval/Steering Committee | Stakeholders & Advisors | Project Team & SME’s | |||||||||||||||||||||||||||||||||||||||
Name | Organization | Name |
VILLANOVA UNIVERSITY
Six Sigma Process Map
SIX SIGMA
GO HOME!!
COMPLETED
STEP
START / END
INPUT / OUTPUT
DOCUMENT
FLOWCHART LINK
CONNECTORS
https://goo.gl/wZizs0
SIPOC
S.I.P.O.C. Template |
Process Outputs
VILLANOVA UNIVERSITY
Step 1
Step 2
Step 3
Step
VOICE OF CUSTOMER (VOC) SIX SIGMA TEMPLATE | ||||||||||||||||||||||||||||||||||||||
ID | CUSTOMER IDENTITY | VOICE OF THE CUSTOMER | KEY CUSTOMER | ISSUE | CRITICAL CUSTOMER REQUIREMENT | |||||||||||||||||||||||||||||||||
# | Who | What did the customer say? | What does the customer need? | What resulting action is required? | ||||||||||||||||||||||||||||||||||
5 | ||||||||||||||||||||||||||||||||||||||
6 | ||||||||||||||||||||||||||||||||||||||
7 | ||||||||||||||||||||||||||||||||||||||
8 | ||||||||||||||||||||||||||||||||||||||
9 | ||||||||||||||||||||||||||||||||||||||
10 | ||||||||||||||||||||||||||||||||||||||
11 | ||||||||||||||||||||||||||||||||||||||
13 | ||||||||||||||||||||||||||||||||||||||
14 |
https://goo.gl/p
jL8
Affinity Diagram
Affinity Diagram –
Staffing Issues
High Turnover
Frustrated Nurses
DATA
COLLECTION PLAN TEMPLATE GO HOME!!
DATE
1
2
3
4
5
6
7
8
9
10
11
12
LEARN MORE ABOUT SMARTSHEET FOR PROJECT MANAGEMENT
https://goo.gl/qdc7cy
Project: | ||||||||||||||||||||||||||
Deliverable: | Stem & Leaf | |||||||||||||||||||||||||
Student last name: | Your last name here | |||||||||||||||||||||||||
all | ||||||||||||||||||||||||||
If it is | not normal | |||||||||||||||||||||||||
Based on this analysis, what is the next thing you would do? |
Solution Selection Matrix
Please rank each solution for each criteria by using the 1-5 Scale as indicated below |
|||||||||||||||||||||||||
Increase IISE SDD Membership Engagement by 1 | 0% | ||||||||||||||||||||||||
Very | Low | Moderate | Very High | ||||||||||||||||||||||
Potential Solution (Provide Brief | Description | Potential to Meet Goal | Positive Customer | Impact | Stakeholder Buy-in | Time to Implement (1 = Long 5 = Quick) |
Total Score | Implement? | Yes | ||||||||||||||||
Weighted Criteria | |||||||||||||||||||||||||
IISE Sustainable Development Division Membership Engagement | |||||||||||||||||||||||||
Coffee talks with Lean topics | 1 | 46 | |||||||||||||||||||||||
More interactive sessions, instead of standard panel discussions | 1 | 44 | |||||||||||||||||||||||
Board meetings, problem solving discussion groups | |||||||||||||||||||||||||
Tracks for problem solving – interactive session less directive | |||||||||||||||||||||||||
Could we utilize the app to gain feedback? | 1 | 37 | |||||||||||||||||||||||
IISE Connect? | 18 | ||||||||||||||||||||||||
Discussions with TVP’s and Track Chairs | 89 | ||||||||||||||||||||||||
Can we do this outside of the conference? | 1 | 31 | |||||||||||||||||||||||
Survey – VOC | 143 |
&”Arial,Bold”&10Solution Selection Matrix &”Arial,Regular”&8v
&”Arial,Regular”&8&G_x000D_Copyright 20
GoLeanSixSigma.com.
Rights Reserved.
A3
Project XYZ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Location | Date: | Project Lead | Tina Agustiady | Team Members | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Strategic Project | Critical Project | Issue Resolution | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Project Goal | 3. | Action | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Owner | Due Date | 2017 – Week Beginning | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
19 | 26 | 16 | 23 | 30 | 24 | 15 | 22 | 29 | 21 | 28 | 25 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. Project/Problem Analysis (Project: Objectives; Problem: Root Cause, Barriers, Roadblocks) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Out of scope items: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4. Results (Impact on Targets to Improve) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For each line item determine % completion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Element | Item | % complete sitewide | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Comment | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5. Unresolved Issues – Risks: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Legend | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Planned Timeline to Complete Action | Planned Due Date | Planned Action “ON TARGET” | Planned Action “OFF TARGET” | Planned Action “Past Due” | Planned Action Complete |
Countermeasure for Project | Data Table | ||||||||||||
Plant: | Reasons (Root Cause Short Description. This MUST come from a root cause analysis tool) |
Month | Enter KPI | Savings Target | Gap Closure Target | Actual | Better | Worse | |||||
Date of Review: | Enter Date of Review | ||||||||||||
Start Month: | Enter 1st Month Counter Measure Form Is Used | ||||||||||||
May | |||||||||||||
June | |||||||||||||
July | |||||||||||||
Problem Statement: | |||||||||||||
Enter Problem Statement | |||||||||||||
Overall Impact (Note: Should Exceed “Gap to Close”) | 0.0 | ||||||||||||
Reasons (Enter Reason Being Addressed from Above) |
What (Describe actions being taken to address this Root Cause) |
Who (Resp for action and impact) |
When | Impact (Target Benefit by the Complete Date) |
Status | ||||||||
Planned Impact Improvement (Note: This must equal or exceed the gap closure target) |
Enter Title
Better Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 0 0 0 0 0 0 0 0 0 0 0 0 Worse Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 0 0 0 0 0 0 0 0 0 0 0 0 Target Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Actual
0 0 0 0 0 0 0 0 0 0 0 0 Gap Closure
Process Function (Step) | Potential Failure Modes (process defects) | Potential Failure Effects (KPOVs) | SEV | Class | Potential Causes of Failure (KPIVs) | OCC | Current | DET | RPN | Recommend Actions | Responsible | Taken Actions | |||||||
32 | |||||||||||||||||||
33 | |||||||||||||||||||
34 | |||||||||||||||||||
35 |
Severity
Criteria: Severity of Effect Defined | Ranking | ||
Hazardous: Without Warning | May endanger operator. Failure mode affects safe vehicle operation and / or involves noncompliance with government regulation. Failure will occur WITHOUT warning. | ||
Hazardous: With Warning | May endanger operator. Failure mode affects safe vehicle operation and / or involves noncompliance with government regulation. Failure will occur WITH warning. | ||
Major disruption to production line. | 100 | ||
Minor | |||
Minor disruption to production line. A portion (less than 100%) may have to be scrapped (no sorting). Vehicle / item operable, but some comfort / convenience item(s) inoperable. Customers experience discomfort. | |||
Minor disruption to production line. 100% of product may have to be reworked. Vehicle / item operable, but some comfort / convenience item(s) operable at reduced level of performance. Customer experiences some dissatisfaction. | |||
Very Low | Minor disruption to production line. The product may have to be sorted and a portion (less than 100%) reworked. Fit / finish / squeak / rattle item does not conform. Defect noticed by most customers. | ||
Minor disruption to production line. A portion (less than 100%) of the product may have to be reworked on-line but out-of-station. Fit / finish / squeak / rattle item does not conform. Defect noticed by average customers. | |||
Very Minor | Minor disruption to production line. A portion (less than 100%) of the product may have to be reworked on-line but in-station. Fit / finish / squeak / rattle item does not conform. Defect noticed by discriminating customers. | ||
None | No effect. |
Occurrence
Probability of Failure | Possible Failure Rates | ||||||||||
Very High: | ³ 1 in 2 | < | 0.3 | ||||||||
Failure is almost inevitable | 1 in 3 | ³ 0.33 | |||||||||
High: Generally associated with processes similar to previous | 1 in 8 | ³ | 0.5 | ||||||||
processes that have often failed | 1 in 20 | ³ | 0.6 | ||||||||
Moderate: Generally associated with processes similar to | 1 in | 80 | ³ | 0.8 | |||||||
previous processes which have | 1 in | 40 | ³ 1.00 | ||||||||
experienced occasional failures, but not in major proportions | 1 in 2,000 | ³ | 1.1 | ||||||||
Low: Isolated failures associated with similar processes | 1 in 15,000 | ³ | 1.3 | ||||||||
Very Low: Only isolated failures associated with almost identical processes | 1 in 1 | 50 | ³ | 1.5 | |||||||
Remote | £ 1 in 1,500,000 | ³ | 1.6 |
Detection
Criteria: Liklihood the existence of a defect will be detected by test content before product advances to next or subsequent process | ||
Almost Impossible | Test content detects < 80 % of failures | |
Very Remote | Test content must detect 80 % of failures | |
Test content must detect 8 | 2.5 | |
Test content must detect 85 % of failures | ||
Test content must detect 8 | 7.5 | |
Test content must detect | 90 | |
Moderately High | Test content must detect 92.5 % of failures | |
Test content must detect | 95 | |
Test content must detect 97.5 % of failures | ||
Almost Certain | Test content must detect 99.5 % of failures |
Scorecard
Villanova Basic Scorecard | ||||||||||||||||||||||||||||||
Calculate | ||||||||||||||||||||||||||||||
Q1’15 | Q2’15 | Q3’15 | Q4’15 | Full Year 2015 | ||||||||||||||||||||||||||
FYF | Key Business Metrics | Fcst | ||||||||||||||||||||||||||||
1.16 | 0.9 | Operating Expense Reduction | $15.0 | $1 | 2.0 | $8.0 | $25.0 | $29.0 | $35.0 | $ | 36 | $2 | 4.0 | $100.0 | $97.0 | |||||||||||||||
0. | 96 | 72 | 48 | ERROR:#DIV/0! | Customer Satisfaction | $ | 61 | $ | 58 | $57.0 | $59.0 | |||||||||||||||||||
Net Income | ||||||||||||||||||||||||||||||
1.05 | OWT | $10.0 | $0.0 | $1 | 3.1 | $40.0 | $ | 60 | $ | 63 | ||||||||||||||||||||
Operating Metrics | ||||||||||||||||||||||||||||||
Recall Open Cases | ||||||||||||||||||||||||||||||
Recall Open Case Dollars | ||||||||||||||||||||||||||||||
Recall Cases w/Purchasing | ||||||||||||||||||||||||||||||
Recall Case Dollars w/Purchasing | ||||||||||||||||||||||||||||||
Legacy Open Cases | ||||||||||||||||||||||||||||||
Legacy Open Case Dollars | ||||||||||||||||||||||||||||||
Legacy Cases w/Purchasing | ||||||||||||||||||||||||||||||
Legacy Case Dollars w/Purchasing | ||||||||||||||||||||||||||||||
OWT Cumulative Parts Reviewed | 31,200 | 3,802 | 52 | 800 | 4, | 967 | ||||||||||||||||||||||||
OWT Cumulative Recovery Groups w/TF | 1,213 | 189 | 1,933 | 195 | ||||||||||||||||||||||||||
Status Rules: Current status based on forecast vs. goal for future periods and based on actual vs. goal for past period. FYF status based on full year forecast vs. Goal until the year completes. | ||||||||||||||||||||||||||||||
Status Conditions: Green >=100% of Goal, Yellow 95%- | 99% | |||||||||||||||||||||||||||||
$dollars represented in Millions |
VILLANOVA UNIVERSITY
GO HOME!!
Project Plan Guide:
•To delete these instructions, select this text box and then hit
Delete].
Date Cells (H6:GU7)
These cells power much of the conditional formatting and allow the project plan to “float.” All the cells are indirectly referenced to cell G6, which can be set to a firm date (ex. 2/
010) or a reference (ex. =MIN([project dates])). Adjusting cell G6 will shift the entire calendar.
Task Cells (A10:F40)
The tasks have three levels, deliverable, task and sub task. Each has a different conditional format in the Gantt chart area.
Deliverable Sections
The deliverable section(s) (ex. 15:19) can be copied and pasted as rows to add new deliverable sections below the existing sections if needed.
Within each deliverable section you can add additional room for tasks by inserting a row above the light blue row (ex. 13). This way the appropriate conditional formatting is added and no formulas are compromised.
Task s
By entering a task in the B column the conditional formatting will make the associated bar a medium blue. By entering a task in the C column the associated bar will be light blue. The bar is shown via conditional formatting based on the dates entered (Cols D:E) cross referenced with the calendar across the top.
Task dependence/precedence can be managed by creating formulas between the data cells instead of firm dates (ex. =E11
5 vs.
0/2010).
(B2:E7)
Functionality was added to allow for up to five “special events” that will highlight the background color. This was intended for non-task events that may need to be included.
Misc.
– There is a current date indicator that will show the current date on the Gantt chart.
– The Gantt chart bars and the task list will highlight according to % complete status.
– The Page Setup includes repeating rows of 2:9 and repeating columns of A:G. To print a small section of the chart simply select the area of the Gantt chart (ex. H10:AZ
) and set it as the Print Area.
– Hypothetically additional days can be added to the calendar by copy and inserting columns to the left of Column GU. Be sure to check that the formulas in 6:7 and 4:5 have been copied appropriately.
Gantt Chart
Project Plan Template | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Time off | 3/2 | 4/6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Holiday | 2/6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | 2/2 | 1 | 2/25 | 1 | 2/26 | 1 | 2/27 | 1 | 2/28 | 12/29 | 1 | 2/3 | 12/31 | 1/1 | 1/3 | 1/4 | 1/5 | 1/6 | 1/7 | 1/8 | 1/9 | 1/10 | 1/11 | 1/12 | 1/13 | 1/14 | 1/15 | 1/16 | 1/17 | 1/18 | 1/19 | 1/20 | 1/21 | 1/22 | 1/23 | 1/24 | 1/25 | 1/26 | 1/27 | 1/28 | 1/29 | 1/30 | 1/31 | 2/4 | 2/5 | 2/7 | 2/8 | 2/9 | 2/10 | 2/11 | 2/12 | 2/13 | 2/14 | 2/15 | 2/16 | 2/17 | 2/18 | 2/19 | 2/20 | 2/21 | 2/22 | 2/23 | 2/24 | 3/1 | 3/3 | 3/4 | 3/5 | 3/6 | 3/7 | 3/8 | 3/9 | 3/10 | 3/11 | 3/12 | 3/13 | 3/14 | 3/15 | 3/16 | 3/17 | 3/18 | 3/19 | 3/20 | 3/21 | 3/22 | 3/23 | 3/24 | 3/25 | 3/26 | 3/27 | 3/28 | 3/29 | 3/30 | 3/31 | 4/1 | 4/2 | 4/3 | 4/4 | 4/5 | 4/7 | 4/8 | 4/9 | 4/10 | 4/11 | 4/12 | 4/13 | 4/14 | 4/15 | 4/16 | 4/17 | 4/18 | 4/19 | 4/20 | 4/21 | 4/22 | 4/23 | 4/24 | 4/25 | 4/26 | 4/27 | 4/28 | 4/29 | 4/30 | 5/1 | 5/2 | 5/3 | 5/4 | 5/5 | 5/6 | 5/7 | 5/8 | 5/9 | 5/10 | 5/11 | 5/12 | 5/13 | 5/14 | 5/15 | 5/16 | 5/17 | 5/18 | 5/19 | 5/20 | 5/21 | 5/22 | 5/23 | 5/24 | 5/25 | 5/26 | 5/27 | 5/28 | 5/29 | 5/30 | 5/31 | 6/1 | 6/2 | 6/3 | 6/4 | 6/5 | 6/6 | 6/7 | 6/8 | 6/9 | 6/10 | 6/11 | 6/12 | 6/13 | 6/14 | 6/15 | 6/16 | 6/17 | 6/18 | 6/19 | 6/20 | 6/21 | 6/22 | 6/23 | 6/24 | 6/25 | 6/26 | 6/27 | 6/28 | 6/29 | 6/30 | 7/1 | 7/2 | 7/3 | 7/4 | 7/5 | 7/6 | 7/7 | |||||||||||||||||||||||||||||||||||||
% Complete | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Project Deliverable 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Task 1 | 80% | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Task 2 | 60% | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Task 3 | 10% | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Project Deliverable 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
25% | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sub task 1 | 40% | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sub task 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Project Deliverable 3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Project Deliverable 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sub Task 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Task 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Project Deliverable 5 | 8/1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/18 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/19 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/2 | 8/8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/9 | 8/15 |
&”-,Bold”
Project Plan Template
Page &P of &N
Project Plan Guide:
•To delete these instructions, select this text box and then hit [Delete].
Date Cells (H6:GU7)
These cells power much of the conditional formatting and allow the project plan to “float.” All the cells are indirectly referenced to cell G6, which can be set to a firm date (ex. 2/1/2010) or a reference (ex. =MIN([project dates])). Adjusting cell G6 will shift the entire calendar.
Task Cells (A10:F40)
The tasks have three levels, deliverable, task and sub task. Each has a different conditional format in the Gantt chart area.
Deliverable Sections
The deliverable section(s) (ex. 15:19) can be copied and pasted as rows to add new deliverable sections below the existing sections if needed.
Within each deliverable section you can add additional room for tasks by inserting a row above the light blue row (ex. 13). This way the appropriate conditional formatting is added and no formulas are compromised.
Task s
By entering a task in the B column the conditional formatting will make the associated bar a medium blue. By entering a task in the C column the associated bar will be light blue. The bar is shown via conditional formatting based on the dates entered (Cols D:E) cross referenced with the calendar across the top.
Task dependence/precedence can be managed by creating formulas between the data cells instead of firm dates (ex. =E11+5 vs. 2/10/2010).
Special Events (B2:E7)
Functionality was added to allow for up to five “special events” that will highlight the background color. This was intended for non-task events that may need to be included.
Misc.
– There is a current date indicator that will show the current date on the Gantt chart.
– The Gantt chart bars and the task list will highlight according to % complete status.
– The Page Setup includes repeating rows of 2:9 and repeating columns of A:G. To print a small section of the chart simply select the area of the Gantt chart (ex. H10:AZ41) and set it as the Print Area.
– Hypothetically additional days can be added to the calendar by copy and inserting columns to the left of Column GU. Be sure to check that the formulas in 6:7 and 4:5 have been copied appropriately.
Data Collection Sheet
FLOW CHART | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SUBJECT | FORM NO. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FILE NO. | PAGE NO. OF PAGES | CHARTED BY | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SUMMARY OF STEPS IN PROCESS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OPERATIONS | TRANSPORTS | INSPECTIONS | DELAYS | STORAGE | TOTAL STEPS | TOTAL DIST. | TOTAL MINS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PRESENT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PROPOSED | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SAVINGS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LINE | DETAILS OF PRESENT/PROPOSED METHOD (CIRCLE ONE) | Operation | Transport | Inspection | Delay | Storage | DISTANCE | Possibilities | Notes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Simplify | Alt Sequence | Reg. | Combine | Other | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
¡ | ¨ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Process: | Preparer: | Page: | |||||||
Customer: | Email: | Reference No: | |||||||
Stakeholder: | Phone: | Revision Date: | |||||||
Business: | Owner: | Approval: | |||||||
Process Step | CTQ/Metric | CTQ / Metric Equation | Specification/ Requirement | Measurement Method | Measure Frequency | Responsible for Metric | Link or Report Name | Corrective Action | Responsible for Action |
LSL | USL |
VILLANOVA UNIVERSITY
– People
RACI Matrix | Count of Assignments | |||||||||||||||||||||
Project Structure | Organization Development | Daily Accountability | Lean Tools | |||||||||||||||||||
Role | Names | Project Management | Roles & Responsibilities | Talent Selection | Goal Alignment | Structure | Support | 4 – Tier Structure | Steering Team | Coaching Structure | Daily Tier Accountability | Leader Standard Work | Escalation Process | Problem Solving | 5S + 1 | Visual Management | Total Productive Maintenance | Value Stream Mapping/ Flow | Accountable | Consulting | Inform | |
SENIOR | ||||||||||||||||||||||
VP of CI | ||||||||||||||||||||||
HR Director | ||||||||||||||||||||||
MBB | AC | COUNT | ||||||||||||||||||||
Plant Manager | ||||||||||||||||||||||
Lean Manager | ||||||||||||||||||||||
Operations Mgr | ||||||||||||||||||||||
CI | ||||||||||||||||||||||
Quality Manager | ||||||||||||||||||||||
EH&S Manager |
Responsible 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SENIOR ACCOUNTABLES BB Team Members Support 0 0 0 9 9 7 9 4 8 0 8 8 8 5 5 5 5 0 0 0 0 0 0 0 Accountable 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SENIOR ACCOUNTABLES BB Team Members Support 0 2 0 2 2 1 1 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Consulting 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SENIOR ACCOUNTABLES BB Team Members Support 0 1 3 7 7 5 1 7 1 0 8 8 9 0 0 0 0 0 0 0 0 0 0 0
Responsible 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SENIOR ACCOUNTABLES BB Team Members Support 0 0 0 9 9 7 9 4 8 0 8 8 8 5 5 5 5 0 0 0 0 0 0 0 Accountable 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SENIOR ACCOUNTABLES BB Team Members Support 0 2 0 2 2 1 1 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Consulting 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SENIOR ACCOUNTABLES BB Team Members Support 0 1 3 7 7 5 1 7 1 0 8 8 9 0 0 0 0 0 0 0 0 0 0 0
Instructions: | |
STEP 1 : Define the problem. What is the product, process or service that has failed. | |
STEP 2 : Starting with ‘Materials’ or any other label, ask: is there anything about materials that | |
might contribute to the problem. Record it next to one of the arrows under Materials. | |
STEP 3 : Repeat asking “is there anything about materials that might contribute to the problem” | |
Record each result next to an arrow. | |
STEP 4 : Repeat Step 2 & 3 for each successive category. | |
STEP 5 : Identify the candidates that are the most likely Root Cause | |
STEP 6 : If further “screening” is necessary, assess the likely Root Causes using the “Impact” | |
and “Implement” matrix, selecting items marked 1, then 2 . . . 4 as priorities. |
CTQ
Step 1: Define the problem. Place it at the top. |
Step 2: Ask: ‘What causes this?” or “Why did this happen?” |
Brainstorm all possible answers and write each below the problem |
Step 3: Determine if all items from Step 2 are sufficient and necessary. |
Ask: “are all items at this level necessary for the one on the level above?” |
Step 4: Using each item from Step 2, repeat Step 2 & 3. In other words, treat |
each response from Step 2 as the new problem and repeat Step 2 & 3 |
Step 5: Repeat the process until specific actions can be taken |
Step 6: Identify Root Cause |
Problem
Cause
Cause
Cause
Cause
Cause
Cause
Chart
Template
The Pareto principle states that, for many events, roughly 80% of the effects come from 20% of the causes. | |||||
SORT DATA DESCENDING / HIGH-TO-LOW | |||||
C A U S E | E F F E C T | CUMULATIVE | |||
CATEGORY / DESCRIPTION | PERCENTAGE | ||||
Issue 1 | 74 | 23% | |||
Issue 2 | 42 | ||||
Issue 3 | 49 | 57% | |||
Issue 4 | 68% | ||||
Issue 5 | 76% | ||||
Issue 6 | 85% | ||||
Issue 7 | 91% | ||||
Issue 8 | 97% | ||||
Issue 9 | |||||
Issue 10 |
COUNT Issue 1 Issue 2 Issue 3 Issue 4 Issue 5 Issue 6 Issue 7 Issue 8 Issue 9 Issue 10 74 58 49 33 28 26 22 16 8 3 CUMULATIVE PERCENTAGE Issue 1 Issue 2 Issue 3 Issue 4 Issue 5 Issue 6 Issue 7 Issue 8 Issue 9 Issue 10
334
4858044
0378548895901 0.5
97
1798
256 0.6
0788643
31
63406940063091
4258675078864 0.914
649842
291
529968454258674
53627760252361 1
COUNT Issue 1 Issue 2 Issue 3 Issue 4 Issue 5 Issue 6 Issue 7 Issue 8 Issue 9 Issue 10 74 58 49 33 28 26 22 16 8 3 CUMULATIVE PERCENTAGE Issue 1 Issue 2 Issue 3 Issue 4 Issue 5 Issue 6 Issue 7 Issue 8 Issue 9 Issue 10 0.2334384858044164 0.41640378548895901 0.57097791798107256 0.67507886435331232 0.76340694006309
0.8454258675078864 0.91482649842271291 0.9
29968454258674 0.99053627760252361 1
https://goo.gl/v5dcnZ
DPMO Calculator
GO HOME!!
produced
:
27
:
4
per Unit:
1,000,000 Sigma Level:
0
1,350 Sigma Level:
DPMO
Sigma Level
8
1
http://home.xtra.co.nz/hosts/smtconz/Quality/Simple%20Six%20Sigma%20Calculator.xls
http://home.xtra.co.nz/hosts/smtconz/Quality/Simple%20Six%20Sigma%20Calculator.xls
Without 1.5 sigma shift | With 1.5 sigma shift | ||||||||||||||||||||||||||||||||
Yield | Defect Rate | ||||||||||||||||||||||||||||||||
3 | 173 | 68.2690000% | 3 | 1.7 | 697612 | 30.23880% | 69.76120% | ||||||||||||||||||||||||||
271332 | 7 | 2.8 | 27.1332000% | 660082 | 3 | 3.9 | 180 | 6 | 6.00 | ||||||||||||||||||||||||
1.2 | 230139 | 76.9861000% | 2 | 3.0 | 621378 | 37.86220% | 6 | 2.1 | |||||||||||||||||||||||||
193601 | 80.6399000% | 19.3601000% | 581814 | 4 | 1.8 | 58.18140% | |||||||||||||||||||||||||||
1.4 | 161513 | 8 | 3.8 | 16.151 | 54 | 169 | 4 | 5.8 | 54.16930% | ||||||||||||||||||||||||
1 | 336 | 86.6386000% | 1 | 3.3 | 50 | 1349 | 49.86510% | 5 | 0.1 | ||||||||||||||||||||||||
109598 | 89.0402000% | 1 | 0.95 | 461139 | 53.88610% | 46.11390% | |||||||||||||||||||||||||||
89130 | 91.0870000% | 8.9130000% | 421427 | 57.85730% | 4 | 2.14 | |||||||||||||||||||||||||||
71860 | 9 | 2.81 | 7.1860000% | 382572 | 6 | 1.74 | 38.25720% | ||||||||||||||||||||||||||
1.9 | 57432 | 9 | 4.2 | 5.7 | 344915 | 65.50850% | 3 | 4.4 | 150 | ||||||||||||||||||||||||
45500 | 9 | 5.4 | 4.5500000% | 308770 | 6 | 9.12 | 30.87700% | ||||||||||||||||||||||||||
35728 | 96.4272000% | 3.5 | 274412 | 7 | 2.55 | 27.44120% | |||||||||||||||||||||||||||
2.2 | 27806 | 97.2194000% | 2.7 | 2 | 420 | 7 | 5.79 | 2 | 4.20 | ||||||||||||||||||||||||
2.3 | 21448 | 97.8552000% | 2.14 | 480 | 211927 | 78.80730% | 21.19270% | ||||||||||||||||||||||||||
2.4 | 163 | 98.3605000% | 1.6395000% | 184108 | 8 | 1.58 | 18.41080% | ||||||||||||||||||||||||||
12419 | 98.7581000% | 1.2419000% | 158686 | 84.13140% | 1 | 5.86 | |||||||||||||||||||||||||||
2.6 | 9322 | 99.0678000% | 0.9322000% | 135686 | 86.43140% | 13.56860% | |||||||||||||||||||||||||||
6934 | 99.3066000% | 0.6934000% | 115083 | 88.49 | 170 | 1 | 1.50 | ||||||||||||||||||||||||||
5110 | 99.4890000% | 0.5110000% | 96809 | 90.31910% | 9.68090% | ||||||||||||||||||||||||||||
2.9 | 3731 | 99.6269000% | 0.3731000% | 80762 | 9 | 1.92 | 8.07620% | ||||||||||||||||||||||||||
2699 | 99.7301000% | 0.2699000% | 66810 | 9 | 3.31 | 6.68100% | |||||||||||||||||||||||||||
1935 | 99.8065000% | 0.1935000% | 54801 | 94.51990% | 5.48010% | ||||||||||||||||||||||||||||
3.2 | 1374 | 99.8626000% | 0.1374000% | 44566 | 95.54340% | 4.45 | |||||||||||||||||||||||||||
966 | 99.9034000% | 0.09 | 35931 | 96.40690% | 3.59 | ||||||||||||||||||||||||||||
673 | 99.9327000% | 0.06 | 28716 | 97.12840% | 2.87 | ||||||||||||||||||||||||||||
465 | 99.9535000% | 0.04 | 22750 | 97.72500% | 2.27 | ||||||||||||||||||||||||||||
3.6 | 318 | 99.9682000% | 0.03 | 178 | 98.21360% | 1.78 | |||||||||||||||||||||||||||
3.7 | 215 | 99.9785000% | 0.02 | 13903 | 98.60970% | 1.39030% | |||||||||||||||||||||||||||
99.9856000% | 0.01 | 10724 | 98.92760% | 1.07240% | |||||||||||||||||||||||||||||
99.9904000% | 0.009 | 8197 | 99.18030% | 0.81970% | |||||||||||||||||||||||||||||
99.9937000% | 0.0063000% | 6209 | 99.37910% | 0.62090% | |||||||||||||||||||||||||||||
99.9959000% | 0.004 | 4661 | 99.53390% | 0.46610% | |||||||||||||||||||||||||||||
99.9974000% | 0.002 | 3467 | 99.65330% | 0.34 | |||||||||||||||||||||||||||||
4.3 | 99.9983000% | 0.001 | 2555 | 99.74450% | 0.25 | ||||||||||||||||||||||||||||
99.9990000% | 0.0010000% | 1865 | 99.81350% | 0.18650% | |||||||||||||||||||||||||||||
99.9994000% | 0.0006000% | 99.86510% | |||||||||||||||||||||||||||||||
4.6 | 99.9996000% | 0.0004000% | 99.90330% | 0.09670% | |||||||||||||||||||||||||||||
4.7 | 99.9998000% | 0.000200 | 687 | 99.93130% | 0.06870% | ||||||||||||||||||||||||||||
4.8 | 99.9999000% | 0.000100 | 483 | 99.95170% | 0.04830% | ||||||||||||||||||||||||||||
4.9 | 99.9999040% | 0.000096 | 99.96640% | 0.03360% | |||||||||||||||||||||||||||||
0.574 | 99.9999426% | 0.000057 | 99.97680% | 0.02320% | |||||||||||||||||||||||||||||
5.1 | 99.9999660% | 0.000034 | 159 | 99.98410% | 0.015 | ||||||||||||||||||||||||||||
5.2 | 99.9999800% | 0.000020 | 99.98930% | 0.010 | |||||||||||||||||||||||||||||
5.3 | 0.116 | 99.9999884% | 0.000011 | 99.99280% | 0.007 | ||||||||||||||||||||||||||||
99.9999933% | 0.000006 | 99.99520% | 0.00480% | ||||||||||||||||||||||||||||||
0.038 | 99.9999962% | 0.000003 | 99.99690% | 0.00310% | |||||||||||||||||||||||||||||
5.6 | 99.9999979% | 0.000002 | 99.99800% | 0.00200% | |||||||||||||||||||||||||||||
0.012 | 99.9999988% | 0.000001 | 1 | 3.35 | 99.99867% | 0.00134% | |||||||||||||||||||||||||||
99.9999993% | 0.000000 | 8.55 | 99.99915% | 0.00086% | |||||||||||||||||||||||||||||
5.9 | 99.9999996% | 0.0000004% | 5.42 | 99.99946% | 0.00054% | ||||||||||||||||||||||||||||
99.9999998% | 0.0000002% | 99.99966% | 0.00034% |
VILLANOVA UNIVERSITY
Communication Plan Template | ||||||||
Process/Function Name | Project/Program Name | Project Sponsor/Champion | ||||||
Communication Purpose: | ||||||||
Target Audience | Key Message | Message Dependencies | Delivery Date | Medium | Follow up Medium | Messenger | Escalation Path | Contact Information |
VILLANOVA UNIVERSITY
Training Plan Template | |||||||
Business Division | |||||||
Where | How Many | Key Change/Process | Training Medium | Supporting Docs | Technology Requirements | Other Requirements | Trainer |
VILLANOVA UNIVERSITY
Target Area: | Statement of Audit Objective: | Auditor: | Audit Date: | |||||||||||
Audit Technique | Auditable Item, | Observation | Individual Auditor Rating (Circle Rating) | |||||||||||
Have all associates been trained? | YES | |||||||||||||
Is training documentation available? | ||||||||||||||
Is training documentation current? | ||||||||||||||
Are associates wearing proper safety gear? | ||||||||||||||
Are SOP’s available? | ||||||||||||||
Are SOP’s current? | ||||||||||||||
Is quality being measured | ||||||||||||||
Is sampling being conducted in random fashion | ||||||||||||||
Is sampling meeting it’s sample size target? | ||||||||||||||
Are control charts in control | ||||||||||||||
Are control charts current? | ||||||||||||||
Is the process capability index >1.0? | ||||||||||||||
Number of Out of Compliance Observations | ||||||||||||||
Total Observations | ||||||||||||||
Audit Yield | ||||||||||||||
Corrective Actions Required | ||||||||||||||
Auditor Comments |
VILLANOVA UNIVERSITY
Pugh Matrix Template | ||||||||
Owner: | ||||||||
Measures|CTQ’s|Factors etc. | Importance Rating | Option 1 | Option 2 | Option 3 | Option 4 | Option 5 | Option 6 | Option 7 |
Hard Dollar Savings | ||||||||
Operating Expenses | ||||||||
Cost Avoidance | ||||||||
Ongoing Maintenance Expense | ||||||||
ROI (NPV) | ||||||||
Incremental Capital | ||||||||
Operational Stability | ||||||||
Brand/Reputation | ||||||||
Sum of +’s | ||||||||
Sum of -‘s | ||||||||
Sum of Sames | ||||||||
Weighted Sum of +’s | ||||||||
Weighted Sum of -‘s | ||||||||
Highest Score Wins | ||||||||
Baseline = “write your description of the baseline here” | ||||||||
Option1 = “description of option 1” | ||||||||
Option2 = “description of option 2” | ||||||||
Option3 = “description of option 3” | ||||||||
Option4 = “description of option 4” | ||||||||
Option5 = “description of option 5” | ||||||||
“+” = Better than baseline | ||||||||
“-” = Worse than baseline | ||||||||
“s” = Same as baseline |
VILLANOVA UNIVERSITY
Matrix Owner: | |||||||||||||||||||
Output Measures (Y’s)* | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | |||||||||
Weighting (1-10): | |||||||||||||||||||
Input | Variable | For each X, score its impact on each Y listed above (use a 0,3,5,7 scale) | |||||||||||||||||
X1 | |||||||||||||||||||
X2 | |||||||||||||||||||
X3 | |||||||||||||||||||
X4 | |||||||||||||||||||
X5 | |||||||||||||||||||
X6 | |||||||||||||||||||
X7 | |||||||||||||||||||
X8 | |||||||||||||||||||
X9 | |||||||||||||||||||
X10 | |||||||||||||||||||
X11 | |||||||||||||||||||
X12 | |||||||||||||||||||
X13 | |||||||||||||||||||
X14 | |||||||||||||||||||
X15 | |||||||||||||||||||
X16 | |||||||||||||||||||
X17 | |||||||||||||||||||
X18 | |||||||||||||||||||
X19 | |||||||||||||||||||
X20 | |||||||||||||||||||
X21 | |||||||||||||||||||
X22 | |||||||||||||||||||
X23 | |||||||||||||||||||
X24 | |||||||||||||||||||
X25 | |||||||||||||||||||
X26 | |||||||||||||||||||
X27 | |||||||||||||||||||
X28 | |||||||||||||||||||
X29 | |||||||||||||||||||
X30 | |||||||||||||||||||
Matrix Premise: The Matrix or “Cause & Effect Matrix functions on the premise of the Y=f(x) equation. | |||||||||||||||||||
*Rate each “Y” on a scale of 1 to 10 with 1 being the least important output measure | |||||||||||||||||||
#For each X rate its impact on each Y using a 0,3,5,7 scale (0=No impact, 3=Weak impact, 5=Moderate impact, 7=Strong impact). |
VILLANOVA UNIVERSITY
Company | Last Updated | ||||
Risk ID | Risk Category | Risk Description | Risk Impact | ImpactRating | Mitigation Action |
VILLANOVA UNIVERSITY
Sample Size Calculator | ||||||
Continuous | Data Type | Discrete | ||||
Enter Proportion Defective: | 0.50 | |||||
Acceptable Margin of Error: | 0.05 | |||||
Required Sample Size @ 99% CI | 666 | |||||
Required Sample Size @ 95% CI | 385 | |||||
Required Sample Size @ 90% CI |
VILLANOVA UNIVERSITY
Takt Time Calculator
Please enter data in boxes marked yellow | |||||
Working | shifts | ||||
Hours / shift | hours | ||||
Gross Available time / shift | minutes | ||||
Break time / shift | |||||
Lunch time / shift | |||||
Planned downtime / shift | |||||
Net Available time / shift | |||||
25200 | seconds | ||||
Net Available time / day | |||||
Customer Demand / day | |||||
Takt Time = | seconds / unit |
VILLANOVA UNIVERSITY
Table of Probabilities for the Standard Normal (Z) Distribution | |||||||||||||||||||
Right Tailed Distribution | |||||||||||||||||||
0.07 | 0.08 | ||||||||||||||||||
0.500000 | 0.496011 | 0.492022 | 0.488034 | 0.484 | 47 | 0.480061 | 0.476078 | 0.472097 | 0.468119 | 0.464144 | |||||||||
0.460 | 172 | 0.456205 | 0.452242 | 0.448283 | 0.444330 | 0.440382 | 0.436441 | 0.432505 | 0.428576 | 0.424655 | |||||||||
0.420740 | 0.4 | 168 | 0.412 | 0.409046 | 0.405 | 165 | 0.401294 | 0.397432 | 0.393580 | 0.389739 | 0.385908 | ||||||||
0.382089 | 0.378280 | 0.374484 | 0.370700 | 0.366928 | 0.363169 | 0.359424 | 0.355691 | 0.351973 | 0.348268 | ||||||||||
0.344578 | 0.340903 | 0.337243 | 0.333598 | 0.329969 | 0.326355 | 0.322758 | 0.319178 | 0.315614 | 0.312067 | ||||||||||
0.308538 | 0.305026 | 0.30 | 153 | 0.298056 | 0.294599 | 0.291160 | 0.287740 | 0.284339 | 0.280957 | 0.277 | |||||||||
0.274253 | 0.270931 | 0.267 | 0.264347 | 0.261 | 0.257 | 0.254 | 0.251429 | 0.248252 | 0.245097 | ||||||||||
0.241964 | 0.238852 | 0.235762 | 0.232695 | 0.229650 | 0.226627 | 0.223627 | 0.220650 | 0.2 | 176 | 0.214764 | |||||||||
0.211 | 0.208970 | 0.206108 | 0.203269 | 0.200454 | 0.197663 | 0.194895 | 0.192150 | 0.189430 | 0.186733 | ||||||||||
0.184060 | 0.181411 | 0.178786 | 0.176186 | 0.173609 | 0. | 171 | 0.168528 | 0. | 166 | 0.163543 | 0.161087 | ||||||||
0.158655 | 0.156248 | 0.153864 | 0.151505 | 0. | 149 | 0.146859 | 0.144572 | 0.142310 | 0.140071 | 0.137857 | |||||||||
0.135666 | 0.133500 | 0.131357 | 0.129238 | 0.127143 | 0.125072 | 0.123024 | 0.121000 | 0.119000 | 0.117023 | ||||||||||
0.115 | 0.113139 | 0.111232 | 0.109349 | 0.107488 | 0.105650 | 0.103 | 0.102 | 0.100273 | 0.098525 | ||||||||||
0.096800 | 0.095098 | 0.093418 | 0.09 | 175 | 0.090123 | 0.088508 | 0.086915 | 0.085343 | 0.083793 | 0.082264 | |||||||||
0.080757 | 0.079270 | 0.077804 | 0.076359 | 0.074934 | 0.073529 | 0.072 | 0.070781 | 0.069437 | 0.068112 | ||||||||||
0.066807 | 0.065522 | 0.064255 | 0.063008 | 0.061780 | 0.060571 | 0.059380 | 0.058208 | 0.057053 | 0.055917 | ||||||||||
0.054799 | 0.053699 | 0.052616 | 0.051 | 0.050503 | 0.049471 | 0.048457 | 0.047460 | 0.046479 | 0.045514 | ||||||||||
0.044565 | 0.043633 | 0.042716 | 0.041815 | 0.040930 | 0.040059 | 0.039204 | 0.038364 | 0.037538 | 0.036727 | ||||||||||
0.035930 | 0.035148 | 0.034380 | 0.033625 | 0.032884 | 0.032157 | 0.031443 | 0.030742 | 0.030054 | 0.029379 | ||||||||||
0.028717 | 0.028067 | 0.027429 | 0.026803 | 0.026190 | 0.025588 | 0.024998 | 0.024419 | 0.023852 | 0.023295 | ||||||||||
0.022750 | 0.022216 | 0.021692 | 0.021178 | 0.020 | 0.020182 | 0.019699 | 0.019226 | 0.018763 | 0.018309 | ||||||||||
0.017864 | 0.0 | 174 | 0.017003 | 0.016586 | 0.016 | 177 | 0.015778 | 0.015386 | 0.015003 | 0.014 | 0.014262 | ||||||||
0.013 | 0.013553 | 0.013209 | 0.012874 | 0.012545 | 0.012224 | 0.011 | 0.011604 | 0.011304 | 0.011011 | ||||||||||
0.010724 | 0.010444 | 0.010170 | 0.009903 | 0.009642 | 0.009387 | 0.009137 | 0.008 | 0.008656 | 0.008424 | ||||||||||
0.008198 | 0.007976 | 0.007760 | 0.007549 | 0.007344 | 0.007143 | 0.006947 | 0.006756 | 0.006569 | 0.006387 | ||||||||||
0.006210 | 0.006037 | 0.005 | 0.005703 | 0.005543 | 0.005386 | 0.005234 | 0.005085 | 0.004940 | 0.004799 | ||||||||||
0.004661 | 0.004527 | 0.004396 | 0.004269 | 0.004145 | 0.004025 | 0.003907 | 0.003793 | 0.003681 | 0.003573 | ||||||||||
0.003467 | 0.003364 | 0.003264 | 0.003 | 167 | 0.003072 | 0.002980 | 0.002890 | 0.002803 | 0.002718 | 0.002635 | |||||||||
0.002555 | 0.002477 | 0.002401 | 0.002327 | 0.002256 | 0.002186 | 0.002118 | 0.002052 | 0.001988 | 0.001926 | ||||||||||
0.001866 | 0.001807 | 0.001750 | 0.001695 | 0.001641 | 0.001589 | 0.001538 | 0.001489 | 0.001441 | 0.001395 | ||||||||||
0.001350 | 0.001306 | 0.001264 | 0.001223 | 0.001183 | 0.001144 | 0.001107 | 0.001070 | 0.001035 | 0.001001 | ||||||||||
0.000968 | 0.000935 | 0.000904 | 0.000874 | 0.000845 | 0.000816 | 0.000789 | 0.000762 | 0.000736 | 0.000711 | ||||||||||
0.000687 | 0.000664 | 0.000641 | 0.000619 | 0.000598 | 0.000577 | 0.000557 | 0.000538 | 0.000519 | 0.000501 | ||||||||||
0.000483 | 0.000466 | 0.000450 | 0.000434 | 0.000419 | 0.000404 | 0.000390 | 0.000376 | 0.000362 | 0.000349 | ||||||||||
0.000337 | 0.000325 | 0.000313 | 0.000302 | 0.000291 | 0.000280 | 0.000270 | 0.000260 | 0.000251 | 0.000242 | ||||||||||
0.000233 | 0.000224 | 0.000216 | 0.000208 | 0.000193 | 0.000185 | 0.000178 | 0.000172 | 0.000165 | |||||||||||
0.000159 | 0.000153 | 0.000147 | 0.000142 | 0.000136 | 0.000131 | 0.000126 | 0.000121 | 0.000117 | 0.000112 | ||||||||||
0.000108 | 0.000104 | 0.000092 | 0.000088 | 0.000085 | 0.000082 | 0.000078 | 0.000075 | ||||||||||||
0.000072 | 0.000069 | 0.000067 | 0.000064 | 0.000062 | 0.000059 | 0.000054 | 0.000052 | 0.000050 | |||||||||||
0.000048 | 0.000046 | 0.000044 | 0.000042 | 0.000041 | 0.000039 | 0.000037 | 0.000036 | 0.000033 | |||||||||||
0.000032 | 0.000030 | 0.000029 | 0.000028 | 0.000027 | 0.000026 | 0.000025 | 0.000024 | 0.000023 | 0.000022 | ||||||||||
0.000021 | 0.000019 | 0.000018 | 0.000017 | 0.000016 | 0.000015 | 0.000014 | |||||||||||||
0.000013 | 0.000012 | 0.000010 | 0.000009 | ||||||||||||||||
0.000008 | 0.000007 | ||||||||||||||||||
0.000005 | 0.000004 | ||||||||||||||||||
Standard Normal (Z) Distribution: |
VILLANOVA UNIVERSITY
Table of Probabilities for Student’s t-Distribution | |||||||||||||||||||||||
df | 0.600 | 0.700 | 0.800 | 0.900 | 0.950 | 0.975 | 0.995 | ||||||||||||||||
0.325 | 0.727 | 1.376 | 3.07 | 6.314 | 1 | 2.70 | 3 | 1.82 | 63.657 | ||||||||||||||
0.289 | 0.617 | 1.061 | 1.88 | 2.92 | 4.30 | 6.965 | 9.925 | ||||||||||||||||
0.584 | 0.978 | 1.638 | 2.35 | 3.18 | 4.54 | 5.841 | |||||||||||||||||
0.271 | 0.56 | 0.941 | 1.53 | 2.13 | 2.77 | 3.74 | 4.60 | ||||||||||||||||
0.55 | 0.920 | 1.47 | 2.01 | 2.57 | 3.36 | 4.03 | |||||||||||||||||
0.265 | 0.553 | 0.906 | 1.440 | 1.94 | 2.44 | 3.14 | 3.70 | ||||||||||||||||
0.263 | 0.54 | 0.896 | 1.415 | 1.89 | 2.36 | 2.99 | 3.49 | ||||||||||||||||
0.262 | 0.546 | 0.889 | 1.397 | 1.86 | 2.30 | 2.89 | 3.355 | ||||||||||||||||
0.543 | 0.883 | 1.383 | 1.83 | 2.26 | 2.82 | 3.250 | |||||||||||||||||
0.260 | 0.542 | 0.879 | 1.372 | 1.81 | 2.22 | 2.76 | 3.16 | ||||||||||||||||
0.540 | 0.876 | 1.363 | 1.79 | 2.20 | 2.71 | 3.10 | |||||||||||||||||
0.259 | 0.539 | 0.873 | 1.35 | 1.782 | 2.17 | 2.68 | 3.05 | ||||||||||||||||
0.538 | 0.870 | 1.350 | 1.77 | 2.16 | 2.65 | 3.01 | |||||||||||||||||
0.258 | 0.537 | 0.868 | 1.345 | 1.761 | 2.145 | 2.62 | 2.97 | ||||||||||||||||
0.536 | 0.866 | 1.341 | 1.75 | 2.131 | 2.60 | 2.94 | |||||||||||||||||
0.535 | 0.865 | 1.337 | 1.746 | 2.12 | 2.58 | 2.921 | |||||||||||||||||
0.534 | 0.863 | 1.333 | 1.740 | 2.11 | 2.56 | 2.898 | |||||||||||||||||
0.862 | 1.330 | 1.73 | 2.10 | 2.552 | 2.878 | ||||||||||||||||||
0.533 | 0.861 | 1.328 | 1.729 | 2.09 | 2.53 | 2.86 | |||||||||||||||||
0.860 | 1.325 | 1.725 | 2.08 | 2.528 | 2.84 | ||||||||||||||||||
0.532 | 0.859 | 1.323 | 1.721 | 2.080 | 2.51 | 2.83 | |||||||||||||||||
0.256 | 0.858 | 1.321 | 1.71 | 2.07 | 2.508 | 2.819 | |||||||||||||||||
1.319 | 1.714 | 2.06 | 2.500 | 2.80 | |||||||||||||||||||
0.531 | 0.857 | 1.318 | 1.711 | 2.064 | 2.49 | 2.79 | |||||||||||||||||
0.856 | 1.316 | 1.70 | 2.060 | 2.48 | 2.78 | ||||||||||||||||||
1.315 | 1.706 | 2.05 | 2.47 | 2.779 | |||||||||||||||||||
0.855 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | ||||||||||||||||||
0.530 | 1.313 | 1.701 | 2.04 | 2.46 | 2.763 | ||||||||||||||||||
0.854 | 1.311 | 1.69 | 2.045 | 2.462 | 2.75 | ||||||||||||||||||
1.310 | 1.697 | 2.042 | 2.45 | 2.750 | |||||||||||||||||||
0.529 | 0.851 | 1.303 | 1.68 | 2.02 | 2.42 | 2.704 | |||||||||||||||||
0.527 | 0.848 | 1.296 | 1.671 | 2.00 | 2.39 | 2.66 | |||||||||||||||||
0.526 | 1.289 | 1.65 | 1.98 | 2.358 | 2.61 | ||||||||||||||||||
df (degrees of freedom) = number of samples – 1 | |||||||||||||||||||||||
1 – alpha (for one tail) or 1 – alpha/2 (for two tails) |
VILLANOVA UNIVERSITY
Table of Probabilities for the F Distribution | ||||||||||||||||||||||||||||
Alpha = | ||||||||||||||||||||||||||||
D/N | ||||||||||||||||||||||||||||
161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 24 | 2.98 | 243.91 | 244.69 | 245.36 | 245.95 | 248.01 | 249.05 | 250.10 | 251.14 | 252.20 | 253.25 | |||||||
18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.41 | 19.42 | 19.43 | 19.45 | 19.46 | 19.47 | 19.48 | 19.49 | |||||||||||
10.13 | 9.55 | 9.28 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.76 | 8.74 | 8.73 | 8.71 | 8.70 | 8.66 | 8.64 | 8.62 | 8.59 | 8.57 | ||||||||||
7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 5.96 | 5.94 | 5.91 | 5.89 | 5.87 | 5.80 | 5.77 | 5.75 | 5.72 | 5.69 | 5.66 | ||||||||||
6.61 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.70 | 4.68 | 4.66 | 4.64 | 4.62 | 4.56 | 4.53 | 4.46 | 4.43 | 4.40 | ||||||||||
5.99 | 5.14 | 4.76 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.00 | 3.98 | 3.96 | 3.94 | 3.87 | 3.84 | 3.81 | 3.77 | ||||||||||||
5.59 | 4.35 | 4.12 | 3.97 | 3.79 | 3.73 | 3.68 | 3.64 | 3.60 | 3.57 | 3.55 | 3.53 | 3.51 | 3.44 | 3.41 | 3.38 | 3.34 | 3.30 | 3.27 | ||||||||||
5.32 | 4.07 | 3.69 | 3.58 | 3.50 | 3.39 | 3.28 | 3.26 | 3.24 | 3.22 | 3.15 | 3.12 | 3.08 | 3.04 | |||||||||||||||
5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.03 | 2.90 | |||||||||||||||||||
4.96 | 3.71 | 3.33 | 3.02 | 2.91 | 2.85 | 2.74 | ||||||||||||||||||||||
4.84 | 3.20 | 3.09 | 2.95 | 2.72 | ||||||||||||||||||||||||
4.75 | 3.89 | 3.11 | 3.00 | 2.69 | 2.64 | 2.54 | 2.43 | 2.38 | 2.34 | |||||||||||||||||||
4.67 | 2.67 | 2.63 | 2.25 | |||||||||||||||||||||||||
2.96 | 2.31 | 2.18 | ||||||||||||||||||||||||||
3.06 | 2.59 | 2.40 | 2.33 | 2.29 | ||||||||||||||||||||||||
4.49 | 2.37 | 2.28 | 2.24 | 2.19 | 2.15 | |||||||||||||||||||||||
2.41 | 2.23 | |||||||||||||||||||||||||||
4.41 | 2.93 | 1.97 | ||||||||||||||||||||||||||
4.38 | 3.52 | 3.13 | 2.03 | 1.93 | ||||||||||||||||||||||||
1.99 | 1.95 | 1.90 | ||||||||||||||||||||||||||
4.32 | 3.47 | 2.32 | 1.96 | 1.87 | ||||||||||||||||||||||||
1.84 | ||||||||||||||||||||||||||||
3.42 | 1.91 | |||||||||||||||||||||||||||
3.40 | ||||||||||||||||||||||||||||
4.24 | ||||||||||||||||||||||||||||
4.23 | 1.85 | 1.80 | ||||||||||||||||||||||||||
2.73 | ||||||||||||||||||||||||||||
4.18 | ||||||||||||||||||||||||||||
4.17 | 3.32 | 2.21 | ||||||||||||||||||||||||||
4.08 | 1.64 | |||||||||||||||||||||||||||
1.59 | ||||||||||||||||||||||||||||
3.92 | 1.66 | 1.61 | 1.55 | 1.43 | ||||||||||||||||||||||||
Right Tailed, D/N = df in denominator = down the rows, df in numerator = across the columns | Note: Table is for an alpha of 0.05 | |||||||||||||||||||||||||||
Table of Probabilities for F Distribution |
VILLANOVA UNIVERSITY
Table of Probabilities for the Chi-Squared Distribution | |||||||||||||||||||
Alpha Risk | |||||||||||||||||||
0.75 | |||||||||||||||||||
0.000157 | 0.000982 | 0.00393 | 0.0158 | 0.455 | 2.706 | 3.841 | 6.635 | 7.879 | 10.8 | ||||||||||
0.575 | 1.386 | 2.773 | 4.605 | 5.991 | 9.210 | 10.5 | 1 | 3.816 | |||||||||||
0.216 | 0.352 | 1.213 | 2.366 | 4.108 | 6.251 | 7.815 | 11.345 | 12.838 | 16.266 | ||||||||||
0.207 | 0.297 | 0.711 | 1.064 | 1.923 | 3.357 | 5.385 | 7.779 | 9.488 | 13.277 | 14.860 | 18.467 | ||||||||
0.554 | 0.831 | 1.145 | 1.610 | 2.675 | 4.351 | 6.626 | 9.236 | 11.070 | 15.086 | 16.750 | 20.515 | ||||||||
0.676 | 0.872 | 1.237 | 1.635 | 2.204 | 3.455 | 5.348 | 7.841 | 10.6 | 12.592 | 16.812 | 18.548 | 22.458 | |||||||
0.989 | 1.239 | 1.690 | 2.167 | 2.833 | 4.255 | 6.346 | 9.037 | 12.017 | 14.067 | 18.475 | 20.278 | 24.322 | |||||||
1.344 | 1.646 | 2.180 | 2.733 | 3.490 | 5.071 | 7.344 | 10.219 | 13.362 | 15.507 | 20.090 | 21.955 | 26.124 | |||||||
1.735 | 2.088 | 2.700 | 3.325 | 4.168 | 5.899 | 8.343 | 11.389 | 14.684 | 16.919 | 21.666 | 23.589 | 27.877 | |||||||
2.156 | 2.558 | 3.247 | 3.940 | 4.865 | 6.737 | 9.342 | 12.549 | 15.987 | 18.307 | 23.209 | 25.188 | 29.588 | |||||||
2.603 | 3.053 | 4.575 | 5.578 | 7.58 | 10.341 | 13.701 | 17.275 | 19.675 | 24.725 | 26.757 | 31.264 | ||||||||
3.074 | 3.571 | 4.404 | 5.226 | 6.304 | 8.438 | 11.340 | 14.845 | 18.549 | 21.026 | 26.217 | 28.300 | 32.909 | |||||||
3.565 | 4.107 | 5.009 | 5.892 | 7.042 | 9.299 | 12.340 | 15.984 | 19.812 | 22.362 | 2 | 7.6 | 29.819 | 34.528 | ||||||
4.075 | 4.660 | 5.629 | 6.571 | 7.790 | 10.165 | 13.339 | 17.117 | 21.064 | 23.685 | 29.141 | 31.319 | 36.123 | |||||||
4.601 | 5.229 | 6.262 | 7.261 | 8.547 | 11.037 | 14.339 | 18.245 | 22.307 | 24.996 | 30.578 | 32.801 | 37.697 | |||||||
5.142 | 5.812 | 6.908 | 7.962 | 9.312 | 11.912 | 15.338 | 19.369 | 23.542 | 26.296 | 32.000 | 34.267 | 39.252 | |||||||
5.697 | 6.408 | 7.56 | 8.672 | 10.085 | 12.792 | 16.338 | 20.489 | 24.769 | 27.587 | 33.409 | 35.718 | 40.790 | |||||||
6.265 | 7.015 | 8.231 | 9.390 | 10.86 | 13.675 | 17.338 | 21.605 | 25.989 | 28.869 | 34.805 | 37.156 | 42.312 | |||||||
6.844 | 7.63 | 8.907 | 10.117 | 11.651 | 14.562 | 18.338 | 22.718 | 27.204 | 30.144 | 36.191 | 38.582 | 43.820 | |||||||
7.434 | 8.260 | 9.591 | 10.85 | 12.443 | 15.452 | 19.337 | 23.828 | 28.412 | 31.410 | 37.566 | 39.997 | 45.315 | |||||||
8.034 | 8.897 | 10.283 | 11.591 | 13.240 | 16.344 | 20.337 | 24.935 | 29.615 | 32.671 | 38.932 | 41.401 | 46.797 | |||||||
8.643 | 9.542 | 10.9 | 12.338 | 14.041 | 17.240 | 21.337 | 26.039 | 30.813 | 33.924 | 40.289 | 42.796 | 48.268 | |||||||
9.260 | 10.196 | 11.689 | 13.091 | 14.848 | 18.137 | 22.337 | 27.141 | 32.007 | 35.172 | 41.638 | 44.181 | 49.728 | |||||||
9.886 | 10.856 | 12.401 | 13.848 | 15.659 | 19.037 | 23.337 | 28.241 | 33.196 | 36.415 | 42.980 | 45.559 | 51.179 | |||||||
10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 19.939 | 24.337 | 29.339 | 34.382 | 3 | 7.65 | 44.314 | 46.928 | 52.620 | ||||||
11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 20.843 | 25.336 | 30.435 | 35.563 | 38.885 | 45.642 | 48.290 | 54.052 | |||||||
11.808 | 12.879 | 14.573 | 18.114 | 21.749 | 26.336 | 31.528 | 36.741 | 40.113 | 46.963 | 49.645 | 55.476 | ||||||||
12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 22.657 | 27.336 | 32.620 | 37.916 | 41.337 | 48.278 | 50.993 | 56.892 | |||||||
13.121 | 14.256 | 16.047 | 17.708 | 19.768 | 23.567 | 28.336 | 33.711 | 39.087 | 42.557 | 49.588 | 52.336 | 58.301 | |||||||
13.787 | 14.953 | 16.791 | 18.493 | 20.599 | 24.478 | 29.336 | 34.800 | 40.256 | 43.773 | 50.892 | 53.672 | 59.703 | |||||||
20.707 | 22.164 | 24.433 | 26.509 | 29.051 | 33.660 | 39.335 | 45.616 | 51.805 | 55.758 | 63.691 | 66.766 | 73.402 | |||||||
27.991 | 29.707 | 32.357 | 34.764 | 3 | 7.68 | 42.942 | 49.335 | 56.334 | 63.167 | 67.505 | 76. | 154 | 79.490 | 86.661 | |||||
35.534 | 3 | 7.48 | 40.482 | 43.188 | 46.459 | 52.294 | 59.335 | 66.981 | 74.397 | 79.082 | 88.379 | 91.952 | 99.607 | ||||||
43.275 | 45.442 | 48.758 | 51.739 | 55.329 | 61.698 | 69.334 | 7 | 7.57 | 85.527 | 90.531 | 100.425 | 104.215 | 112.317 | ||||||
51.172 | 53.540 | 57.153 | 60.391 | 64.278 | 71.145 | 79.334 | 88.130 | 96.578 | 101.879 | 112.329 | 116.321 | 124.839 | |||||||
59.196 | 61.754 | 65.647 | 69.126 | 73.291 | 80.625 | 89.334 | 98.650 | 107.565 | 113.145 | 124.116 | 128.299 | 137.208 | |||||||
67.328 | 70.065 | 74.222 | 77.929 | 82.358 | 90.133 | 99.334 | 109.141 | 118.498 | 124.342 | 135.807 | 140.169 | 149.449 | |||||||
Right Tailed Distribution, df = degrees of freedom = (#Rows – 1) x (#Columns – 1) | |||||||||||||||||||
Chi Square Table of Probabilities: |
VILLANOVA UNIVERSITY
PROCESS MAP TEMPLATE
SIX SIGMA PROCESS MAP TEMPLATE | DATE COMPLETED |
STEP
START / END
INPUT / OUTPUT
DOCUMENT
FLOWCHART LINK
CONNECTORS
https://goo.gl/wZizs0
Template
OBJECTIVE / | PRIMARY MEANS / | SECONDARY MEANS / | TERTIARY MEANS / | FOURTH LEVEL / |
VISION | LONG-TERM | SHORT-TERM | TARGETS |
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
https://goo.gl/PpiO3g
CORRELATION COEFFICIENT
FOR CORRELATION COEFFICIENT USE”PEARSON” FUNCTION IN THE “ |
For PEARSON formula: FORMULAS> MORE FUNCTIONS > PEARSON |
FOR HELP: USE “HELP” ACROSS THE EXCEL TOOL BAR. TYPE “CORRELATION COEFICIENT” > SELECT PEARSON |
Returns the Pearson product moment correlation coefficient, r, a dimensionless index that ranges from -1.0 to 1.0 inclusive and reflects the extent of a linear relationship between two data sets. |
PEARSON(array1, array2) : Array 1 requires a set of Independent Values; Array2 requires a set of Dependent Values |
Source: Khan Academy |
The correlation coefficient r measures the direction and strength of a linear relationship. |
Here are some facts about r: |
•It always has a value between -1and 1. |
•Strong positive linear relationships have values of r closer to 1. |
•Strong negative linear relationships have values of r closer to -1. |
•Weaker relationships have values of r closer to 0. |
https://www.khanacademy.org/math/probability/scatterplots-a1/creating-interpreting-scatterplots/v/correlation-coefficient-intuition-examples
Based on VOC data to be used to construct CTQ’s. Project Team will identify key focus areas in Doctor’s | Office |
Time the Doctor was spending with Patients | |
Number of times Dr arrives late | |
Proper Medical Devices not Available | |
Number of times patient is left in the hallway | |
Rooms Available at Doctor’s Office | |
Number of times staff arrive late | |
Staffing of Doctor’s Office | |
Number of times scheduling changes were made for patient testing | |
Number of times patient had to be rescheduled for Dr visit | |
Arrival Time of Patients | |
Data set to be used to construct 5 | Histogram | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Proper Medical Devices | N/A | Rooms Available at Dr. | Time Dr. Spends with Patients | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Staffing at Dr. Office | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/1/19 | 10.82 | 7.45 | 0.5502 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/2/19 | 7.55 | 0.552 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/3/19 | 7.67 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/4/19 | 10.87 | 0.5462 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/5/19 | 10.84 | 7.62 | 0.549 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/6/19 | 7.59 | 0.548 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/7/19 | 0.5428 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/8/19 | 7.52 | 0.5532 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/9/19 | 10.89 | 7.49 | 0.547 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/10/19 | 7.54 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/11/19 | 10.81 | 0.5494 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/12/19 | 7.61 | 0.551 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/13/19 | 0.5509 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/14/19 | 0.541 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/15/19 | 7.53 | 0.5518 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/16/19 | 0.5523 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/17/19 | 0.5415 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/18/19 | 0.5477 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/19/19 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/20/19 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/21/19 | 10.83 | 0.5437 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/22/19 | 7.51 | 0.5463 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/23/19 | 10.7 | 0.556 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/24/19 | 10.78 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/25/19 | 0.5542 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/26/19 | 0.5569 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/27/19 | 0.5432 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/28/19 | 0.5487 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/29/19 | 0.5537 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/30/19 | 10.88 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7/31/19 | 10.67 | 7.64 | 0.5554 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/1/19 | 10.72 | 0.5521 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/2/19 | 10.65 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/3/19 | 7.46 | 0.5563 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/4/19 | 0.5508 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/5/19 | 0.5527 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/6/19 | 0.5546 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/7/19 | 10.66 | 0.5478 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/8/19 | 10.61 | 0.5468 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/9/19 | 10.69 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/10/19 | 10.71 | 0.5531 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/11/19 | 0.5482 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/12/19 | 10.64 | 0.5473 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/13/19 | 10.62 | 0.5442 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/14/19 | 10.63 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/15/19 | 0.5596 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/16/19 | 7.47 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/17/19 | 0.5507 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/18/19 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/19/19 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/20/19 | 10.68 | 0.5488 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/21/19 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/22/19 | 0.5483 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/23/19 | 0.5431 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/24/19 | 10.58 | 0.545 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/25/19 | 0.5392 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/26/19 | 0.5512 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/27/19 | 0.5465 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/28/19 | 0.5479 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8/29/19 | 0.5452 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Upper Spec | 7.66 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lower Spec | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10.75 |
Data represents Wait Time in minutes beyond their scheduled Appointment Time for the last 70 patients. Use to create Stem and Leaf Plots. |
PATIENT WAITING TIME |
Data set for determining performance for Medical Assistant #2. The historical mean for Medical Assistant #1 was .0126. |
MEDICAL ASSISTANT #1 DATA HISTORIC MEAN |
0.0126 |
This is the data set for evaluating Correlation between Room Availability and Patient Arrival | |
Room # Availability | Patient Arrival Time |
152 | |
Data Type
GO HOME!!
1
0
Continuous X & Y
0
At least one group of data is different than at least one other group. 0
all N/A 1
Continuous X & Y N/A 0
0
Continuous X & Y N/A 1
used to find the mathematical function needed to translate a continuous but nonnormal distribution into a normal distribution. After you have entered your data,
tells you what mathematical function can be applied to each of your data points to bring your data closer to a normal distribution.
Continuous X & Y N/A 1
all N/A 0
Y
N/A 0
Define all N/A 0
Define all N/A 0
Continuous X & Y N/A 1
all N/A 0
0
all N/A 0
all N/A 0
Continuous X & Y N/A 0
Continuous Y & all X’s N/A 0
all N/A 0
discrete (category or count) N/A 0
(Process ModelTM)
Continuous Y, Discrete Xs N/A 0
Quick graphical comparison of two or more processes’ variation or spread
Continuous Y, Discrete Xs N/A
all N/A 0
Continuous X & Y 0
Continuous X & Y 0
all N/A 0
Continuous Y & all X’s N/A 1
Continuous Y, Discrete Xs
1
The presence of special cause variation indicates that factors are influencing the output of your process. Eliminating the influence of these factors will improve the performance of your process and bring your process into control
Continuous X & Y N/A 1
all N/A 0
0
Continuous Y & all X’s N/A
all N/A 0
Continuous Y & all X’s N/A 0
all N/A 0
Continuous X & Y
0
Continuous Y & all X’s N/A 0
1
cont (measurement) not normal 0
Defectives Y / Continuous & Discrete X N/A 1
all N/A 0
Defectives Y / Continuous & Discrete X N/A 1
data…In the Measure phase to stratify data collected on the project Y…..In the Analyze phase to assess the relative impact or frequency of different factors, or Xs
all N/A 0
all N/A 0
all N/A 0
all N/A 0
Continuous X & Y A correlation is detected 0
all N/A 0
Continuous X & Y N/A 0
cont (measurement) N/A 1
all N/A 1
all N/A 0
Continuous X & Y
0
all N/A 0
Continuous Y & all X’s N/A 0
It helps you compare the performance of your process or product to the performance standard and determine if technology or control is the problem
Continuous Y, Discrete Xs N/A 0
Continuous X & Y N/A 0
all N/A 0
N/A 1
all N/A 0
all N/A 0
The presence of special cause variation indicates that factors are influencing the output of your process. Eliminating the influence of these factors will improve the performance of your process and bring your process into control
Continuous X & Y N/A 1
Continuous X & Y N/A 1
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6045&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6072&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6073&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6093&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6054&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6051&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6058&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6132&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6089&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6135&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6134&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6047&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6133&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6090&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6131&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6061&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6204&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6119&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6205&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6080&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6147&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6055&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6046&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6078&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6079&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6074&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6065&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6048&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6207&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6121&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6153&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6208&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6068&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6114&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6122&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6052&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6210&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6059&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6063&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6148&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6056&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6123&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6214&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6067&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6060&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6091&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6064&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6049&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6125&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6070&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6071&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6062&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6075&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6215&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6115&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6066&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6116&hin=19&whatpage=Topic&ns=new
../../AppData/Local/Temp/AppData/Local/Downloads/TopicContent.asp?tpcid=6203&hin=19&whatpage=Topic&ns=new
Minitab
Use When | Minitab Format | Data Format | p < 0.05 indicates | ||||
Determine if the average of a group of data is different than the average of other (multiple) groups of data | Compare multiple fixtures to determine if one or more performs differently | Stat ANOVA Oneway | Response data must be stacked in one column and the individual points must be tagged (numerically) in another column. | ||||
Box & Whisker Plot | Compare median and variation between groups of data. Also identifies outliers. | Compare turbine blade weights using different scales. | Graph Boxplot | ||||
Cause & Effect Diagram/ Fishbone | Brainstorming possible sources of variation for a particular effect | Potential sources of variation in gage r&r | Stat Quality Tools Cause and Effect | Input ideas in proper column heading for main branches of fishbone. Type effect in pulldown window. | |||
Determine if one set of defectives data is different than other sets of defectives data. | Compare DPUs between GE90 and CF6 | Stat Tables Chi-square Test | Input two columns; one column containing the number of non-defective, and the other containing the number of defective. | ||||
Compare length of service of GE90 technicians to CF6 technicians | Graph Character Graphs Dotplot | Input multiple columns of data of equal length | |||||
General Linear Models | Determine if difference in categorical data between groups is real when taking into account other variable x’s | Determine if height and weight are significant variables between two groups when looking at pay | Stat ANOVA General Linear Model | Response data must be stacked in one column and the individual points must be tagged (numerically) in another column. Other variables must be stacked in separate columns. | Attribute/ Variable | ||
View the distribution of data (spread, mean, mode, outliers, etc.) | View the distribution of Y | Graph Histogram or Stat Quality Tools Process Capability | Input one column of data | ||||
Determine if the variation in one group of data is different than the variation in other (multiple) groups of data | Compare the variation between teams | Stat ANOVA Homogeneity of Variance | |||||
Determine if the means of non-normal data are different | Compare the means of cycle time for different delivery methods | Stat Nonparametrics Kruskal-Wallis | |||||
Multi Vari Analysis (See also Run Chart / Time Series Plot) | Helps identify most important types or families of variation | Compare within piece, piece to piece or time to time making of airfoils leading edge thickness | Graph Interval Plot | Response data must be stacked in one column and the individual points must be tagged (numerically) in another column in time order. | |||
Notched Box Plot | Compare median of a given confidence interval and variation between groups of data | Compare different hole drilling patterns to see if the median and spread of the diameters are the same | Graph Character Graphs Boxplot | ||||
One-sample t-test | Determine if average of a group of data is statistically equal to a specific target | Manufacturer claims the average number of cookies in a 1 lb. package is 250. You sample 10 packages and find that the average is 235. Use this test to disprove the manufacturer’s claim. | Stat Basic Statistics 1 Sample t | ||||
Compare how frequently different causes occur | Determine which defect occurs the most often for a particular engine program | Stat Quality Tools Pareto Chart | Input two columns of equal length | ||||
Create visual aide of each step in the process being evaluated | Map engine horizontal area with all rework loops and inspection points | Use rectangles for process steps and diamonds for decision points | |||||
Determine if a group of data incrementally changes with another group | Determine if a runout changes with temperature | Stat Regression Regression | |||||
Run Chart/Time Series Plot | Look for trends, outliers, oscillations, etc. | View runout values over time | Stat Quality Tools Run Chart or Graph Time Series Plot | Input one column of data. Must also input a subgroup size (1 will show all points) | |||
Look for correlations between groups of variable data | Determine if rotor blade length varies with home position | Graph Plot or Graph Marginal Plot or Graph Matrix Plot (multiples) | Input two or more groups of data of equal length | ||||
Two-sample t-test | Determine if the average of one group of data is greater than (or less than) the average of another group of data | Determine if the average radius produced by one grinder is different than the average radius produced by another grinder | Stat Basic Statistics 2 Sample t |
A Lean Six Sigma Case Study
If you want to prosper for a year, grow rice. If you want to prosper for a decade, plant trees. If
you want to prosper for a century, grow people — a wise old farmer reflecting back on a life
of toil in the soil
PROJECT DESCRIPTION
The following Lean Six Sigma case study will reflect a real-life healthcare problem with
Continuous Improvement and Lean Six Sigma Tools to show how some of the tools are put into
place in the real world. You will be required to complete the project along with some analysis
for each section.
Case Study:
Student Case Study
Process Improvement –
Reduction in Wait Time for
Patients in a Doctor Office
Executive Summary
Dr. Deasley is a popular Doctor in Tampa, Florida specializing in primary care. He spends a great deal of
time with each of his patients, typically, 45 minutes to one (1) hour. Dr. Deasley’s patients and staff love
him for his patience and attention. However, there are many other patients waiting in the waiting room
who become impatient at the long wait time. Dr. Deasley’s office hours are 7:30 AM to 5:30 PM Monday
through Friday. He conducts patient call backs between patients, during his lunch hour and after office
hours. We triage the calls so he gets back to more seriously sick patients first. However, sometimes he
doesn’t call back non-emergencies until the next AM. Dr. Deasley becomes overbooked because he likes
to have 10 patients scheduled per day. However, he frequently needs to rebook patients he is unable to
see due to time constraints. As a result, several long-term patients have been leaving his practice.
This has resulted in a decrease in revenue for the office. In addition, his office is experiencing a rather
high rate of staff turnover. Staff are responsible for booking patients and managing the workflow in the
office. When backlogs occur and patients become annoyed about wait times, the staff usually
experience the brunt of the patient dissatisfaction, which effects staff morale. Each time the office hires
replacement staff, it takes a significant amount of time to train new employees and it is costly to
advertise and recruit competent staff. Dr. Deasley is very concerned about both his patients and staff.
His Office Manager, Ms. Smith, who recently was employed at Memorial Hospital of Tampa, participated
in several Continuous Improvement Projects at the hospital. She is a certified Lean Six Sigma Green Belt.
As a result, Ms. Smith has suggested a plan to the doctor to conduct a Lean Six Sigma project with the
objective of Reducing Patient Wait Time and Improving Office Workflow. Ms. Smith explained the
project improvements and objectives. Dr. Deasley has approved the project. As an initial step, the Office
Manager has established her team. Each employee has a role in the project. Based on patient
complaints and the doctor’s requirements, they have some initial Voice of Customer (VOC). Patients
would like to see the Doctor within 10 minutes of arriving and spend no more than 30 minutes in the
office total for routine visits. The Doctor would like to see 15 patients per day. These changes need to
be made within 3 months in order to minimize patient dissatisfaction, stop patients leaving the practice
due to long wait times and rescheduling and improve employee morale and retention.
Define
Please fill out the project charter. Write the Goal Statement utilizing S.M.A.R.T. objectives
(Specific, Measurable, Attainable, Relevant and Time Bound):
Please complete a High Level “As Is” Process Map.
Please create a SIPOC of the process based on the information that you know. Feel free to use
your imagination for this.
Describe methods for collecting Voice of the Customer. (SEE APPENDIX A for VOC)
Please create an Affinity Diagram or List based on VOC so you can identify Customer “NEEDS”
for CTQ Tree
Please create a Critical to Quality Tree utilizing the Voice of the Customer. Identify the Needs,
Drivers and Requirements or Metric to needed to meet these needs
Conclusion of Define: The output of the DEFINE stage is a PROJECT CHARTER (PC) and identified
stakeholders. The PC shall include a Problem Statement with Goals utilizing S.M.A.R.T.
methodology to address the problems identified. The Goal will be aligned with the customer
CTQ Requirements. A clearly defines SCOPE is included in the PC. What is IN SCOPE and What is
OUT OF SCOPE? Your Team is identified, and Roles & Responsibilities are defined. A SIPOC Map
is completed. An “As Is” Process Map is completed in order to better visualize the Workflow in
the current process. The DEFINE Phase provides for identification of the VOC and CTQs, their
needs, drivers and requirements. The student will have evaluated and Affinitized the VOC. CTQ
trees were created to identify key requirements for meeting the customer’s needs. The Project
Team should have a list of external Key stake Holders, if applicable, e.g., Hospital Radiology, who
may be impacted by process changes within the Doctor’s medical practice. If the Doctor’s staff
schedule testing appointments for patients and are required to make frequent changes, this has
an impact on the department or entity conducting the testing. The Project Team will have met
with Dr. Deasley for his approval to proceed and now has a baseline to begin the Measure
phase.
Measure
Based on Customer requirements the project team collected initial data. Use Pareto Analysis of
# occurrences to determine the 5 factors which are causing over 75% of the problem with wait
time. You need to determine the biggest contributors to the problem. One tool to accomplish
this is the Pareto Chart. You need to know if it is reasonable to assume that these five
‘parameters’ are normally distributed. (SEE APPENDIX B)
Based on Pareto Analysis what are the focus areas? What are the Key Performance Indicators
(KPI’s)?
Define your Data Collection Plan. Include the types of data you will be collecting (Discrete or
Continuous), Why? (In many instances you will have a mix of both types of data depending on
the Data source.
Based on the data collected Construct FIVE (5) histograms for the below data sets. (SEE
APPENDIX C) for data sets
Interpret each of the histograms to determine whether the assumption of normality is
reasonable.
If the data are not approximately normally distributed, why not?
The team also believed there was a Motorola shift during the process. Please describe the
Motorola Shift and potential causes that they could have experienced the shift.
Calculate the DPMO for the entire process considering the 5 main opportunities for defects.
Determine the baseline sigma with the Motorola shift.
Calculate the Process Performance, Pp and Ppk, based on the time the Doctor spends with the
patient. Student will be able to compare current Process performance to Capability Study
performed for process improvements. Tint: drawing a picture of the data based on a Normal
Curve may help student visualize if data is skewed when evaluating population distribution. Use
UCL = 60 minutes and LCL = 0 Minutes. In Healthcare LCL will frequently be “O”
Pp = (Upper Spec – Target Value)/(6*Standard Deviation)
Ppk = (Upper Spec – Mean)/(3*Standard Deviation)
Conclusion of Measure: A Data Collection Plan was created. Data was taken of as many
parameters as possible before changing any variables. Key Data has been provided for your
use as directed in the instructions above. Pareto charts have been created based on the VOC.
The 5 Largest Contributing Factors have been Identified. These should have aligned with the
data provided. A method for tracking data to capture for analysis should have been identified
even if the actual data is already provided. Then from the categories and data “collected”, 5
Histograms should have been created along with the narrative for Analysis, specifically
related to determination if data was normally distributed. An explanation of the Motorola
Shift is provided. DPMO is calculated. Pp/Ppk are calculated and current process Sigma Level
is defined. It was found that Dr. Deasley was spending more time with his patients than
necessary. The process needs to be analyzed based on the data.
Analyze
Create a Stem and Leaf Plot that were captured from the patient wait times in the waiting
rooms. (SEE APPENDIX D for data set)
Calculate the measures of central Tendency. What can you interpret from these measures?
Please document a conclusion (SEE APPENDIX D for data set)
Two individual staff members were being observed performing identical activities in the Doctor’s
office. 25 random samples were taken. One of the Medical Assistants is a new employee. Medical
Assistant #1 has been with Dr. Deasley for several years. Medical Assistant #2 is a new employee
and has been with this medical practice for 9 months. We want to determine how Medical Assistant
#2 performs when compared to Medical Assistant #1 since she is a new employee. (SEE APENDIX E
for data sets)
Assume this is a one-sided t-test and the historical average of Medical Assistant #1 is .0126
Medical Assistant #1 data will be considered the population mean
Please provide the following information based on your analysis of the two Medical Assistants
• Medical Assistant #2 Average
• Medical Assistant #2 Standard Deviation
• Null Hypothesis
• Alternative Hypothesis
• T-Test Statistic
• Critical Value
• Statistical Conclusion for the null and alternative hypothesis.
Conclusion of Analyze: Stem and Leaf Plots were created; Measures of Central Tendency were also
determined, and an interpretation of the results were made. Data was analyzed to review if different
staff members were performing similarly or not. Students should have established a Null Hypothesis
and Alternative Hypothesis from the data for the 2 staff members. A one-sided T-Test was performed,
and conclusions made based on the outcome.
IMPROVE
A staff member has been stating for months that there is a correlation between the Room Availability
and the Patient arrival time. Should the Office Manager have listened to this staff member’s
observation? Refer back to the Pareto to serve as guidance.
Construct a scatter diagram and calculate the correlation coefficient to see if she is correct. SEE
APPENDIX F for data set
o Is there strong correlation between room availability and patient arrival time?
o IF there is strong correlation, is it positive or negative? (Answer with positive, negative
or N/A)
o What is the correlation coefficient between the two variables? (Use 6 decimal places)
Discuss the 8 Deadly Wastes (MUDA) of the process.
Create a Fishbone Diagram. List Potential Root Causes. Narrow Potential Root Causes to Key
Root Causes. Explain some of the key Root causes.
Discuss Improvements that you would suggest based on findings from FISHBONE Analysis.
Conclusion of Improve: A Scatter Plot was constructed, and a Correlation was completed. The
determination of whether the 2 factors Correlate based on a Correlation Coefficient determination is
stated and comments on whether the correlation is Positive or Negative are included. 8 Wastes were
evaluated and identified where applicable. A FISHBONE DIAGRAM was created, and many ideas were
brainstormed for Potential Root Cause. These were then narrowed to the critical few Root Causes.
Many improvement suggestions were made.
CONTROL
An I-MR chart was plotted for the Doctor’s office to ensure the specifications were performing as
planned and the patients and Doctors were satisfied.
Please indicate if the control chart is stable and if any Shewhart Rules have occurred.
A normality test was conducted. Please advise if the data is normal.
A capability study was completed. Please advise if the process is stable and any analysis you
find is relevant.
Please complete a Control and Monitoring Plan for the project.
Please state your conclusions of Dr Deasley’s office
Conclusion of Control: A conclusion regarding the stability of the Control Chart was made and any
violations of the Shewhart Rules were noted. Students then observed the Normality of the data. A
Capability Study was done presumably using data from improvements made and analysis of the
output was discussed. A Control and Monitoring Plan was created to ensure monitoring of
improvements for Sustainability. Finally, a control plan was developed to be used for staff to visually
track their performance and for discussion with Dr. Deasley. We have collected data after making
many improvements to see if the process is now stable. We will continue to monitor our progress and
follow the control plan.
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
APPENDIX A: VOICE OF THE CUSTOMER
Feedback from Patients:
I wait too long. I only have an hour for Lunch. I make my appointments specifically at Lunch
time because I can’t come after work.
I like to come very early and be one of Dr. D’s first patients. If I am not his 1st, I end up waiting
and am late for work. My company is very strict about being on time.
I wouldn’t mind if the doctor spent less time with me. I only usually come for an Annual
Checkup and a Flu shot. If I feel really sick, I call the office. When I broke my arm last year, the
doctor sent me right to the hospital. You guys made the arrangements for my X-Ray, so I didn’t
need to wait.
I can’t be late when I come in the afternoon. I need to pick my daughter up from school. If I
come in the afternoon, can you make it a short visit?
The doctor spends so much time asking me questions, can’t he look at my chart before I get
into the exam room?
The last time I was here, you put me in a room with someone else’s clothes. The woman had
gone to the Ladies’ room and came back to get dressed. I had to wait in the hallway.
Feedback from Staff
We need to organize the exam rooms. Dr. Deasley is always looking for something and I need to
go find it.
We can’t have multiple people at the Front desk assigning patients to rooms. They don’t always
assign patients to the right room and equipment is not available
Dr. D keeps taking equipment with him from room to room,
The patients are not getting here early enough to get them ready for the doctor. He like to have
their Blood Pressure, Weight and Temperature done before he comes in.
Patients keep arriving the last minute, then they get angry because they miss their appointment
and need to wait.
I hope I never have to reschedule Mrs. Smyth for a new appointment because the doctor
couldn’t see her. She was practically screaming at me.
We had 2 patients, Mrs. Jones and Mr. Thomas ask for their records to be sent to a new
doctor’s office. That is the 4th time that has happened this year and we are only ½ way through
the year.
The new Medical Assistant was complaining because she said there is too much chaos here. I
think she might be sorry she came her. I hope she doesn’t go back to the hospital. It takes so
much time to find good people and train them.
Feedback from Doctor
I don’t always have the instruments I need in the Exam Room. I need to have my Assistant go
find what I need. I’ve started taking Instruments with me to my next patient only to find 3 of
the same instrument I am carrying in the next Exam Room.
I have seen several patients waiting in the hall outside the Exam Room. I don’t like that
situation. We need to stop this practice.
I see some staff running around like crazy and others sitting around appearing to have nothing
to do.
I am not one of these “hands off’ doctors, I like to spend time with my patients. But sometimes
a patient will sit there with nothing to say and another patient will have a long list of issues.
If this improvement project is successful, I would like to see 15 Patients a day. We need to keep
operating costs in mind. We need to keep our equipment up to date and I need to ensure we
plan for salaries and bonuses at year end.
I notice we have had 3 people leave within the past 18 months. I would like to understand why.
It is very expensive to recruit staff and it takes time before they are proficient in their jobs. The
team we have now is very good. I would like to keep all of them. We do monitor salaries and
compare with market standards, so I know our salaries and benefits are competitive.
Feedback from Other Sources
Radiology Department is complaining because they state we make too many changes to the
patient appointments.
The Laboratory department is complaining because our patients are coming for testing outside
their assigned appointment time and too late in the day.
APPENDIX B: Based on VOC data to be used to construct CTQ’s. Project Team will
identify key focus areas in Doctor’s Office using Pareto Diagram. These focus
areas will then be monitored as defined in Data Collection Plan.
Time the Doctor was spending with Patients – 79
Number of times Dr arrives late – 4
Proper Medical Devices not Available – 30
Number of times patient is left in the hallway – 17
Rooms Available at Doctor’s Office -22
Number of times staff arrive late – 3
Staffing of Doctor’s Office -41
Number of times scheduling changes were made for patient testing – 15
Number of times patient had to be rescheduled for Dr visit – 10
Arrival Time of Patients – 52
APPENDIX C: Data set to be used to construct 5 Histograms
1. Percent of Rooms fully equipped with Proper Medical Devices
• This varies between 10.5 and 11. This is the number of devices or
number of times devices were not available in the rooms.
2. Rooms available –
• Varies from 7.45 -7.66. This is the percentage of rooms available
3. Staffing at Dr. Office
• Varies from 0.54-0.56. Effort per day (which is a value used depicting that
people that had multiple duties so you could have a fraction of a person
available).
4. Arrival Time of Patients
• Minutes late
5. Time Dr. Spends with Patients
• Minutes
Date
% of
Rooms
fully
equipped
with
Proper
Medical
Devices
% Rooms
Available
at Dr.
Office
Staffing at
Dr. Office
Percent
time
spent
Minutes
late
Time Dr.
Spends
with
Patients
4-Jul 10.82 7.45 0.5502 172 48
5-Jul 10.82 7.55 0.5522 169 34
6-Jul 10.86 7.67 0.546 177 23
7-Jul 10.87 7.65 0.5462 170 32
8-Jul 10.84 7.62 0.5491 174 19
9-Jul 10.85 7.59 0.5486 175 37
10-Jul 10.86 7.6 0.5428 167 20
11-Jul 10.87 7.52 0.5532 171 47
12-Jul 10.89 7.49 0.5472 168 27
13-Jul 10.8 7.54 0.5522 172 31
14-Jul 10.81 7.52 0.5494 168 44
15-Jul 10.89 7.61 0.5519 163 27
16-Jul 10.81 7.52 0.5509 174 61
17-Jul 10.9 7.61 0.5412 169 17
18-Jul 10.87 7.53 0.5518 171 26
19-Jul 10.86 7.57 0.5523 172 50
20-Jul 10.85 7.59 0.5415 172 11
21-Jul 10.85 7.55 0.5477 168 53
22-Jul 10.86 7.61 0.553 169 18
23-Jul 10.86 7.54 0.55 166 75
24-Jul 10.83 7.57 0.5437 172 27
25-Jul 10.89 7.51 0.5463 168 36
26-Jul 10.76 7.63 0.5566 174 40
27-Jul 10.78 7.5 0.541 175 30
28-Jul 10.86 7.58 0.5542 164 23
29-Jul 10.9 7.55 0.5569 173 15
30-Jul 10.83 7.51 0.5432 168 15
31-Jul 10.82 7.5 0.5487 170 35
1-Aug 10.87 7.59 0.5537 173 45
2-Aug 10.88 7.58 0.541 170 25
3-Aug 10.67 7.64 0.5554 173 42
4-Aug 10.72 7.48 0.5521 167 64
5-Aug 10.65 7.57 0.5532 169 23
6-Aug 10.7 7.46 0.5563 172 53
7-Aug 10.67 7.53 0.5508 165 50
8-Aug 10.65 7.6 0.5527 170 16
9-Aug 10.6 7.49 0.5546 169 41
10-Aug 10.66 7.65 0.5478 170 7
11-Aug 10.61 7.55 0.5468 165 31
12-Aug 10.69 7.55 0.5566 172 18
13-Aug 10.71 7.51 0.5531 168 53
14-Aug 10.66 7.49 0.5482 173 34
15-Aug 10.64 7.49 0.5473 172 37
16-Aug 10.62 7.49 0.5442 170 80
17-Aug 10.63 7.56 0.5491 176 19
18-Aug 10.67 7.59 0.5596 175 26
19-Aug 10.62 7.47 0.5491 170 13
20-Aug 10.62 7.58 0.5507 169 18
21-Aug 10.63 7.55 0.556 177 36
22-Aug 10.65 7.47 0.5428 178 7
23-Aug 10.68 7.63 0.5488 172 34
24-Aug 10.68 7.47 0.5531 171 28
25-Aug 10.63 7.68 0.5483 171 44
26-Aug 10.68 7.55 0.5431 171 18
27-Aug 10.58 7.47 0.545 177 23
28-Aug 10.59 7.59 0.5392 172 17
29-Aug 10.64 7.57 0.5512 170 25
30-Aug 10.64 7.53 0.5465 169 15
1-Sept 10.68 7.58 0.5479 164 23
2-Sept 10.6 7.6 0.5452 174 21
Upper Spec 11 7.66 0.56 180 60
Lower Spec 10.5 7.45 0.54 165 0
Target 10.75 7.55 0.55 170 20
APPENDIX D: Data represents Wait Time in minutes beyond their scheduled
Appointment Time for the last 70 patients. Use to create Stem and Leaf Plots.
PATIENT
WAITING
TIME
PATIENT
WAITING
TIME
PATIENT
WAITING
TIME
PATIENT
WAITING
TIME
PATIENT
WAITING
TIME
PATIENT
WAITING
TIME
PATIENT
WAITING
TIME
16 15 19 48 14 47 21
16 17 16 45 80 20 46
17 13 26 50 6 71 48
37 47 17 49 49 47 20
47 11 65 63 48 50 64
32 47 15 17 47 95 16
48 38 17 22 48 47 44
21 17 48 10 52 20 82
18 20 16 18 46 50 51
75 49 44 51 48 35 58
APPENDIX E: Data set for determining performance for Medical Assistant #2. The
historical mean for Medical Assistant #1 was .0126.
MEDICAL ASSISTANT #2
Data
% time/hour
0.009
0.010
0.011
0.011
0.010
0.011
0.011
0.013
0.008
0.012
0.010
0.013
0.014
0.012
0.009
0.014
0.011
0.015
0.011
0.015
0.011
0.011
0.012
0.008
APPENDIX F: This is the data set for evaluating Correlation between Room
Availability and Patient Arrival
Room # Availability Patient Arrival Time
154 0.554
153 0.553
152 0.552
152 0.551
151 0.549
151 0.549
151 0.548
151 0.548
151 0.548
151 0.547
151 0.547
151 0.547
151 0.547
151 0.547
151 0.547
151 0.546
150 0.546
150 0.546
150 0.546
150 0.546
150 0.546
150 0.545
150 0.545
150 0.545
149 0.545
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Achiever Papers is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Dissertation Writing Service Works
First, you will need to complete an order form. It's not difficult but, if anything is unclear, you may always chat with us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download